Same Side

GEOMETRY REVIEW AND FORMULAS

Special Angles		
Name	Characteristic	Examples
Right Angle	Measure is 90°.	
Straight Angle	Measure is 180°.	180°
Complementary Angles	The sum of the measures of two complementary angles is 90°.	Angles 1 and 2 are complementary.
Supplementary Angles	The sum of the measures of two supplementary angles is 180°.	Angles 3 and 4 are supplementary.
Vertical Angles	Vertical angles have equal measures.	Angle 2 = Angle 4 Angle 1 = Angle 3
Angles Formed by Parallel Lines and a Transversal		m and n are parallel. $ \begin{array}{c} $
Alternate Interior Angles Alternate Exterior Angles Interior Angles on the	Measures are equal. Measures are equal. Angles are supplementary.	Angle 3 = Angle 6 Angle 1 = Angle 8 Angles 3 and 5 are supplementary.

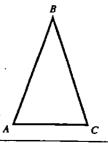
Special	Triangles
---------	------------------

Diaht	Trionalo	

Characteristic

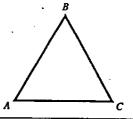
Examples

Name


Triangle has a right angle.

Isosceles Triangle

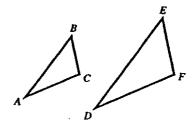
Triangle has two equal sides.


$$AB = BC$$

Equilateral Triangle

Triangle has three equal sides.

$$AB = BC = CA$$



Similar Triangles

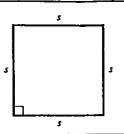
Corresponding angles are equal; corresponding sides are proportional.

$$A = D$$
, $B = E$, $C = F$

$$\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF}$$

Formulas

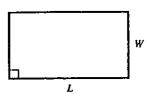
Figure


Formulas

Examples

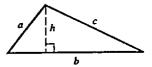
Square

Perimeter:
$$P = 4s$$


Area:
$$A = s^2$$

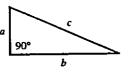
Rectangle

Perimeter:
$$P = 2L + 2W$$


Area:
$$A = LW$$

Triangle

Perimeter:
$$P = a + b + c$$


Area:
$$A = \frac{1}{2}bh$$

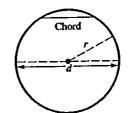
Pythagorean Formula (for right triangles)

In a right triangle with legs
$$a$$
 and b and hypotenuse c ,

$$c^2 = a^2 + b^2$$
.

Sum of the Angles of a Triangle

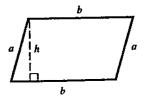
$$A+B+C=180^{\circ}$$


Circle

Diameter:
$$d = 2r$$

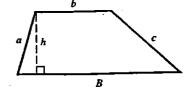
Circumference:
$$C = 2\pi r$$

$$C = \pi d$$


Area:
$$A = \pi r^2$$

Parallelogram

Area:
$$A = bh$$


Perimeter:
$$P = 2a + 2b$$

Trapezoid

Area:
$$A = \frac{1}{2}(B + b)h$$

Perimeter:
$$P = a + b + c + B$$

Formulas		
Figure	Formulas	Examples
Sphere	Volume: $V = \frac{4}{3}\pi r^3$ Surface area: $S = 4\pi r^2$ Circumference: $C = 2\pi r$	
Cone	Volume: $V = \frac{1}{3} \pi r^2 h$ Surface area: $S = \pi r \sqrt{r^2 + h^2}$	
Cube	Volume: $V = e^3$ Surface area: $S = 6e^2$	
Rectangular Solid	Volume: $V = LWH$ Surface area: A = 2HW + 2LW + 2LH	H W L
Right Circular Cylinder	Volume: $V = \pi r^2 h$ Surface area: $S = 2\pi r h + 2\pi r^2$	
Right Pyramid	Volume: $V = \frac{1}{3}Bh$ B = area of the base	